
Object Histories as a Foundation for an Active OODB

Johan van den Akker and Arno Siebes
CWI, P.O.Box 94079, 1090 GB Amsterdam, The Netherlands

e-mail:
�
vdakker,arno � @cwi.nl

To appear in the Proceedings of the DEXA’96 workshop.
c
�

IEEE Computer Society 1996

Abstract

Several links exist between active and temporal
databases. These are summarised by the observation that
rules are triggered by a specified evolution of the database.
In this paper, we discuss the relation between active and
temporal database using DEGAS, an object-based ac-
tive database programming language. To achieve full ac-
tive database functionality, a DEGAS object records its
complete history. Hence, all data needed for a temporal
database supporting a single temporal dimension is pro-
vided. Furthermore, the semantics of the active behaviour
of DEGAS are defined straightforwardly in terms of the
object history. Finally, we discuss the advantages and dis-
advantages of extending DEGAS with a second time dimen-
sion (to achieve full temporal functionality) from an active
database perspective.

1 Introduction

In recent years, the areas of active databases [19] and
temporal databases [17] have been the focus of a signif-
icant research effort. Temporal databases concentrate on
recording and querying database states relative to time. Ac-
tive databases add dynamic behaviour to data in the form of
rules. A rule defines an action which is executed when spec-
ified events occur in the database. In other words, the action
is executed, if the database state evolves over time in the
specified way. Hence, an investigation of the incorporation
of temporal elements in an active database is justified.

From an active database viewpoint, two questions with
regard to its temporal functionality are of interest. The first
is, which record of temporal data is required by a full active
database. The second question is, what are the benefits
of incorporating full temporal database functionality in an
active database.

To answer these questions, this paper presents the tempo-
ral element of DEGAS [2], an active object-oriented database
programming language. The incorporation of a temporal el-
ement is achieved by including the complete history of an

object in its state. As a consequence, the semantics of the ac-
tive behaviour of a DEGAS object can be specified in terms
of the object history, using a standard process algebraic
specification formalism.

In this paper, we first identify the temporal elements of
an active database. Then, we give a short introduction to
the main concepts of the DEGAS data model. After that, the
history of a DEGAS object is defined. Following this, we
show the formalisation of the active behaviour of an object
in terms of the object history. Finally, we compare our
approach to other work in temporal and active databases.

2 Time in Active Databases

The key feature of active databases [19] are production
rules. Usually, these are defined as event-condition-action
(ECA) triples. The event specification may be a complex
event expression composed of multiple basic events, such as
method calls [7, 10] and time events [7, 13, 10]. Since rule
definitions specify sequences of events over time, an active
database has an inherent temporal element, as observed by
Dittrich [8] and Widom and Ceri [19].

We can also see this by looking into rule triggering in
more detail. In order to detect complex events, we need
to store the basic events occurring in the database. These
make up an event queue or event pool. Since a complex
event expression usually specifies a sequence of events, the
record of basic events must store information about the
order in which events occurred.

This inherent temporal element in active databases gives
rise to the question of the relation to databases that keep
historical data. To that end, we examine what temporal data
needs to be stored in an active databases. Not surprisingly,
this depends on the rule language.

Many active databases include time in an event expres-
sion. This can be in relative form, such as “5 days after event�

” or absolute such as “every day at midnight”. Orthogo-
nally, we can put time in event specifications in different
ways. We can add a time parameter to all events or we can
have explicit time events in the event specifications. The
latter choice will make a difference in the way we check
the temporal part of the rule specification. In the former

case, we can check temporal conditions in the condition of
the rule. In the latter, the time events are included in the
event detection mechanism.

Since most active database management systems offer
the possibility to specify parameters of events, we also need
to store the parameters of a method call in addition to the
time it occurred. In this way a rule can be triggered on
method calls only for certain parameter values. For exam-
ple, we may have a rule on a bank account that is only
invoked if a debit action of more than 1000 guilders is
executed.

Every extension of event specification in the definition
of rules beyond single basic events necessitates a record of
part of the history of the database. If we wish to offer all
facilities described above in an active DBMS, i.e., time in
event specifications and parameters to events, we have to
store all method calls with their parameters and timestamps.
It is obvious that we can reconstruct all historical states of
the database, if we have all state transitions in the form
of method calls. Hence, it is a small step from an active
database to a historical database.

A historical database is a restricted form of tempo-
ral database. Temporal databases [17] record data rela-
tive to time. A full temporal database has two tempo-
ral dimensions. Valid time denotes the time a value held
in the real world. Transaction time denotes the time a
value was entered into the database. The combination of
these two dimensions allows us to alter data retrospec-
tively, for example, to correct errors. Historical database
are temporal databases with only one temporal dimension.
In other words, a historical database only records the states
a database went through over time.

The DEGAS model presented in this paper aims to incor-
porate temporal functionality in an active database. To this
end, the state of a DEGAS object includes its history, i.e.,
a record of past states and method calls. Consequently, the
semantics of active rules in a DEGAS object are defined in
terms of its history.

3 The DEGAS data model

We now give a concise introduction to the main concepts
of the DEGAS data model. It is based on autonomous objects.
The motivation for object autonomy is on one hand a natural
further development of active object-oriented databases and
on the other hand the development of highly distributed
information systems. The main contributions of DEGAS are:

� The integration of historical and active database func-
tionality.

� A straightforward mechanism for object evolution, es-
pecially suited for implementing roles.

� Complete encapsulation of an object’s behaviour, in-
cluding rules.

� A good formalisation of rule semantics.

� A conceptual model for distributed information sys-
tems.

For a more elaborate introduction of DEGAS the reader is
referred to [2]. A full formal definition of DEGAS can be
found in [1].

The fundamental notion in DEGAS is the object. The
definition of an object in DEGAS consists of structure and
behaviour. The structure of an object is defined by its at-
tributes. The behaviour definition of a DEGAS object con-
sists of three elements: methods, lifecycles and rules. Meth-
ods define the actions an object can execute. The lifecycle of
an object specifies sequencing and preconditions of meth-
ods. A rule states that an object will execute a given action
in certain situations, specified by events and conditions on
object states.

In other words, methods and lifecycles define the poten-
tial behaviour of an object, whereas rules describe its actual
behaviour as far as can be pre-determined. Conventionally,
only potential behaviour is specified in an object.

Figure 1 shows an example DEGAS object modelling a
PIN card. Attribute and method specification is straight-
forward in DEGAS. Lifecycles are guarded basic process
algebraic expressions [3] composed from the set of method
names as basic actions using the sequential composition
(�), alternative composition (�), repetition (�), and paral-
lel merge (�) operators. For example, the third line of the
lifecycle definition in our example specifies that a ReqWith-
draw action must be followed by a WithdrawOK or a With-
drawRefuse action, and that this sequence may be repeated
arbitrarily. The parallel merge operator � means that two
actions take place without restriction on their sequence, i.e.,� �
	�� � �
	���	�� � .

Rules in DEGAS follow the usual Event-Condition-
Action (ECA) format. The informal semantics of an ECA
rule is, that if the event occurs and the object satisfies the
condition, the action is performed. In DEGAS events are
specified the same as lifecycles with addition of a negation
operator (�). Conditions in lifecycles and rules can refer
to historical values of attributes. If an attribute name is pa-
rameterised by a timestamp, it refers to the value of the
attribute at the specified time. Otherwise, it refers to the
current value of the attribute. The rules in PINcard show
historical references in DEGAS rules.

More in particular, the first rule specifies that the PINcard
sends its permission for a cash withdrawal after a request,
if the total amount withdrawn during the preceding week
is less than the limit of the card. The second rule responds
with a refusal, if the limit is exceeded.

The class of a DEGAS object specifies its inherent capa-
bilities (= attributes, methods, lifecycles and constraints).
Object specialisation in DEGAS is achieved through addons.
An addon models transient capabilities of an object. Addons
can be added to and deleted from an object dynamically, for
example, when an object engages in a relation. A restricted
form of inheritance is supported by DEGAS. Since this is
not relevant for this paper, the interested reader is referred
to [1] for more details. Relations in DEGAS are also objects
with structure and behaviour.

Object PINcard
Attributes

number : integer
limit : integer
account : Oid
issuer : Oid
owner : Oid
PIN : integer

Methods
ReqWithdraw(amount:integer,requester:Oid) =

�
�
WithdrawOK(amount:integer,requester:Oid) =

�
requester.allowed(amount)�

WitdrawRefuse(amount:integer,requester:Oid) =
�

requester.refuse(amount)�
ChangeLimit(newLimit : integer) =

�
limit = newLimit�

ChangePIN(newPIN : integer) =
�

PIN = newPIN�
Lifecycles

([sender==issuer] ChangeLimit ���
([sender==owner] ChangePIN ���
(ReqWithdraw;(WithdrawOK + WithdrawRefuse) � �

Rules
On � WithdrawOK(amount,atm) ��������� ;

ReqWithdraw(reqAmount,machine) �������
if �������! #"$������%!& week

&& Sum � amount '(����) reqAmount % limit
do WithdrawOK(reqAmount,machine)

On � WithdrawOK(amount,atm) ��������� ;
ReqWithdraw(reqAmount,machine) �������
if � � ���! #"$������%!& week

&& Sum � amount '(����) reqAmount * limit
do WithdrawRefuse(reqAmount,machine)

EndObject

Figure 1: A DEGAS object

In the rest of the paper, we focus on the formalisation
of the active behaviour of a DEGAS object in relation to its
historical record. Hence, we do not discuss the aspect of
object evolution through addons.

4 The History of an Object

In the previous section we informally introduced the
main concepts and the syntax of DEGAS and presented its
temporal functionality. We now proceed with the formali-
sation of the relevant part of the DEGAS data model. In this
section we give a formal definition of the state of a DEGAS

object, which consists of its complete history.

Object typing in DEGAS follows Cardelli [5] and Balsters
[4]. The underlying type of an object is a tuple type con-
taining the attributes. Besides simple types, such as Integer,
String or Oid, there are set and tuple types. The underly-
ing type of an object definition contains at least its own
identifier this.

An operator Type(D) can be applied to an object defini-
tion to obtain the underlying type of the object. For example,
the underlying type of the PINcard object from Section 3 is

Type � PINcard �,+-
this:Oid, number:integer, limit:integer, account:Oid,
issuer:Oid, owner:Oid, PIN:integer .

Following temporal database terminology, the state of
an object at a certain point in time is called a snapshot state
[14]. It records the time the object came in this state, a
valuation for the attributes and the method call that brought
the object into this snapshot state.

More formally, a snapshot state of an object / is a
triple 021
35476(8$9:3:;�<>= , where 1 is a timestamp giving the
start time of the validity of this state, 476(8$9 is the valuation
of 8?� Type 6�/>9 of the attributes in this state and ;�<
is a method call, which consists of a method name and a
parameter list.

State History The state history of a DEGAS object
records the snapshot states the object went through dur-
ing its existence. This means that a state history @BA is a
sequence of snapshot states:

CED + CED ��FG��H CED ��&
��HJI5IJIJH CED ��"$�
where K$L�3:MONPLQNPRTSPU>VW1�XQY�1�X(Z,[. This definition of an
object history is largely similar to that found in [12]. The
main difference is that a DEGAS object history deals directly
with DEGAS methods calls and attributes, instead of the
more abstract notions of actions and input and evaluation
attributes. The following part of the history of a PINcard

object is an example:

...- &
\^]`_
ab]cF
FW'-
This +�&JFd\eFca
FW' limit +gf
FcFW'5IeI5IJ' PIN +g&
\c_
aG.�'

ChangePIN ��&
\
_ead��.�H- &
_^]Gadf^]cF
FW'-
This +�&JFd\eFca
FW' limit +h&5FcFcF`'
IJIJIJ' PIN +g&
\
_ead.�'

ChangeLimit ��&5FcFcFd��.
...

Lifecycles and the event expressions of rules
are checked using a projection of the state his-
tory, the event history. It only contains timestamp-
method call pairs. If we have a state history @iA �@iAj6�M`9J�
@iAj65Uc9J�ck
kck
�
@iAj6(Rl9 , then the event history m>A
is the sequence m>Aj6�M`9J�
m>Aj6JU
9:�
kck
k��:mO6(Rl9 of time-event
pairs, where:n

 o' CED �� (�l+ - ��p�'�qJp�'�r`��qJp(��'���s,p�.,]tuD �� (�lv�w�x+ -(y p '�z p �|{}�c'JIJIJI5'~{W����.�'y p +�� p�� z p �|{}�c'JIJIJI5'~{W����+���s p
The example state history above gives us this event history:

IJIJI- &
\^]d_ea>]cF
FW' ChangePIN ��&:\c_
aG��.�H- &
_^]
aGfb]cF
FW' ChangeLimit ��&JFcF
FG��.IJIJI
5 Active Behaviour

The state history of a DEGAS object serves as a basis
for the formalisation of its active behaviour. Hence, we can
formulate the semantics of lifecycles and rules in terms
of process algebraic expressions relative to the observed
execution of the object.

Lifecycle Composition Execution of methods and rules
must conform to the lifecycles on the object. In addition
rules are triggered by the contents of the event history. As
we saw above, lifecycles are guarded basic process alge-
braic expressions [3] with the set of methods of the object as
its basic actions. Hence, the semantics of lifecycles is also
formulated in process algebraic terms. Suppose we have an
object / with the following lifecycle definition:

Lifecycless �s,�
...s,�

Then / follows the process:

s�+!s �G� s,� � IJI5I � s �

with communication function � defined by: K$����� V�l6���35��9i�P� , where � is the set of methods of / .
In process algebra in general, a communication func-

tion � specifies synchronisation between two processes.�l6 � 3
	>9��P< means that the actions
�

and 	 have to take
place simultaneously and are replaced in the trace of the
process by the single action < . For example, if we have the
process 6 � �
	>9
��6�<O�:��9 and �l6�	�3
��9���m , then a resulting
trace might be:

� �
<��
m .
In practical terms the communication function defined

for a DEGAS object means that, if an action occurs in more
than one lifecycle, the execution of that action is a step
forward in all lifecycles. For example, the lifecycle of the
PINcard object from Section 3 is:

��� sender +u+ issuer� ChangeLimit ���� ��� sender +u+ owner � ChangePIN � �� � ReqWithdraw H�� WithdrawOK) WithdrawRefuse �����
Since the three lifecycles defined in PINcard do not have
actions in common, the communication merge � reduces
to an ordinary parallel merge � . Note that a finite automa-
ton is sufficient to match the event history with an event
expression or a lifecycle.

Lifecycle Checking A method is executed if it does not
violate the lifecycles imposed on the object. This means
that the object state must satisfy the, possibly empty, pre-
condition given by the lifecycle. In addition the method call
in combination with the event history must match the event
expression given. If this is the case, the method call is exe-
cuted and appended to the event history. If the method call
does not satisfy the lifecycle of an object, it is discarded.

The formalisation is, that a method call ;�< �� 6(�W[
3ck
kck�3J�c�`9 is executed on an object / with state his-
tory @iA���@iAj6�MW9J�ck
kck
�
@BA�6(Rl9 at time 1 , iff the lifecycle
checking automaton induced by the lifecycle of / is in a
state with an outgoing transition labelled with a method
name � and a condition < , such that, � �P� and < is true
in / at time 1 . The resulting new state of the object isCED�� + CED H - ��'����� ���¡
�e'5IJIJI
'�¡
¢
��'�r`��q}����'���su.
Here ;�6 � 6��`[c3ck
kck�3J�
�`9:35476(8$9�9 denotes the result of the ex-
ecution of � 6��`[c3ck
kckJ35�c�d9 on attribute valuation 476(8$9 .

Rule Triggering As explained above, a rule in DEGAS
is an event-condition-action triple 0(mO3:<£3 � = , where m is a
basic process algebraic expression, < a condition and

�
a

method call. An 0�m�3
<b3 � = is specified as follows in DEGAS:

On
t

if s
do ¤
Before we define the execution of rules, we first give an

informal sketch of the execution model of a DEGAS object.
Basically, the object executesa cycle of two activities. There
is a queue of method calls waiting to be executed.The object

takes a method call from this queue, checks if it is allowed
by the lifecycles, and if so executes it. If the method call
does not agree with the object’s lifecycle, it is not executed
and discarded. During the execution of a method a number
of rules may be triggered. These are collected in a set of
triggered rules. After a method has finished, a rule is picked
at random from this set for execution. After the execution
of this rule, we again construct a set of triggered rules to
pick a rule from. If no more rules are triggered, we start
again with method execution.

R is empty

R is not empty

Triggered Rules R

Pick Rule from R

for Execution

Execute Method

Generate set of

Figure 2: Execution Cycle of a DEGAS Object

From this informal description, we learn that the execu-
tion of rules is a two phase process. During a method call a
set of rules that are triggered by that method call is built up.
After the method has finished, rules are picked at random
from this set. If the condition of the picked rule holds, the
rule is executed.

A rule is triggered by an event occurring in the event
history as a result of a method call. If we have an event
history m¥A¦�§m>A�6�M`9:�
kckck5�
m>Aj6 � 9 and a method call;�<¨�©�i6«ª¬[
3ck
kckJ3�ª7�d9 at a time 1 . Rule ­¨�®0(mO3:<£3 � =
is triggered at time 1 , if m parses the new event historym>A��d021
35�i6|ª [3ck
kck�3�ª � 9:3�15= correctly.

After each execution of a method � the set of triggered
rules ¯�° is constructed. This means that the execution of a
complex method, i.e., a method composed of method calls,
is interrupted by the execution of rules triggered by the
methods it calls.

After a method has finished, one rule is picked for ex-
ecution from the set of triggered rules at random. If its
condition is true and the method call that is its action sat-
isfies the lifecycle of the object, it is executed. Otherwise,
another rule is picked for execution. During rule execution

rule triggering continues. In other words, after each method
executed as a consequence of a rule, a new set of triggered
rules is constructed.

Rule Execution Given a rule set ¯�° after the execution
of method � on an object / . The rule execution phase
follows the algorithm:

1. ¯±�g¯ °
2. A rule ­���0�m�3
<b3 � = is picked at random from ¯ at

time 1 .
3. If < is true and

�
satisfies the lifecycles of the object,�

is executed. Otherwise, discard ­ and goto step 2.

4. Generate a new set ¯ of rules triggered by the action
of ­ .

5. If ¯³²�µ´ , then goto step 2.

This execution model gives us flexibility in the way rules
interact with the lifecycles. If the action of a rule cannot be
executed, because it violates the lifecycles of the object, we
have two options. The action can be discarded or it can be
retried at a later time.

The former will be used in situations where only a timely
reaction is useful. These can be found in applications in
financial markets. For example, our reaction to a falling
price of shares is that we buy some. This is only profitable
if we do it immediately, because otherwise the price may
already have risen again. The other strategy is of use if
the action of a rule must always be executed once a rule
has been triggered. Rules that maintain integrity constraints
will use such a strategy.

The standard behaviour of DEGAS is the immediate reac-
tion. Suppose an object must react to the occurrence of the
event

� �
	 with an action � . This is specified by the follow-
ing rule. If this rule is not chosen for execution after

� �
	 ,
since another rule was chosen from the set of triggered
rules, it is not considered again until the next occurrence of� �:	 .

On ¤�H�¶
do ·
The alternative strategy can be programmed in a DEGAS

rule through the non-occurrence operator � . The following
rule, which specifies that the action is always triggered after
the occurrence of

� �:	 until � has occurred:

On ¤�H�¶>H�¸,·
do ·

6 Comparison to Other Work

Temporal Databases If we compare the temporal func-
tionality of DEGAS with temporal databases in general,
the first thing to note is that DEGAS only records trans-
action time. Hence, it does not offer the functionality of
databases which additionally include valid time. There-
fore, we choose TSQL [15] for a comparison of DEGAS,
since this is a straightforward mono-temporal extension
of SQL. The temporal functionality offered by TSQL are
WHEN-clauses, retrieval of timestamps, temporal ordering,
a TIME-SLICE operation, and aggregate-functions.

WHEN-clauses specify temporal conditions on the data
involved in a query, for example, an overlap in time of two
values. Retrieval of timestamps means that we can ask the
database for the time a condition was valid. Temporal order-
ing gives us the possibility to ask queries like “The first time
employee John’s salary was above 50K”. All data needed
to answer these three categories of queries is present in the
history of a DEGAS object, since each attribute valuation is
related to a time interval.

A time-slice restricts a query to a sub-interval of the
complete history. Clearly, we can do this in DEGAS by eval-
uating a query on a subsequence of the object history only.
Aggregates are functions applied to a time interval. Ex-
amples are average, minimum and maximum values of an
attribute over a period of time. Aggregates relative to time
can be considered a special case of time-slicing, since we
calculate the aggregate over a specified time slice.. Hence,
the data needed is present in a DEGAS object.

The comparison between TSQL and DEGAS is sum-
marised by the following table. We see that a DEGAS object
contains all the data needed for a full mono-temporal query
language.

TSQL Feature Information present
Conditional: WHEN Y
Retrieval of timestamps Y
Temporally ordered information Y
Time-slices Y
Aggregates Y

DEGAS can be extended with a second temporal dimension,
valid time, by qualifying every reference to time in a rule
with the temporal dimension it refers to. For example, if
we refer to a historical attribute value in the condition of
a rule, we must specify whether it refers to valid time or
transaction time.

The situation, however, gets more complex, if we need
to define a rule execution model in an environment where
temporal data are altered retrospectively. Suppose a rule is
triggered on two events that happen within five minutes.
If we specify that these five minutes are valid time, we

must also consider changes of our knowledge of the past.
If we find out later that two events happened within five
minutes of each other, we must specify if it still makes
sense to trigger the rule. Further complexity is introduced
by the combination of valid timestamps and transaction
timestamps.

As we saw earlier, a full active database requires the
presence of all historical data needed to provide transaction
time functionality. The incorporation of a second temporal
dimension means a big complication of the rule model. At
present a good solution to handle this complexity is still
an open problem. Hence, we restrict DEGAS to a single
temporal dimension.

Active Temporal Databases Previous research on the
integration of temporal and active databases is the work
by Etzion, Gal, and Segev [9]. Their model is rich on the
temporal side, including three temporal dimensions. Ac-
tive rules, however, are restricted to derived data. The main
focus is on the consequences of changes in the rules speci-
fying the derived data. An example given in [9] is a retroac-
tive change in the way fines for speeding are calculated.
The possibility of such changes necessitates the third time
dimension in addition to valid and transaction time, deci-
sion time. This timestamp records the time derived data was
calculated.

Temporal Specification of Triggers Another approach
concerned with time in active databases is the work on
temporal triggers by Sistla and Wolfson [16]. These are
condition-action rules, where the condition is formulated in
two variants of a temporal logic, called the Future Temporal
Logic (FTL) and the Past Temporal Logic (PTL). These log-
ics specify relations between timestamped database states.
The basic modal operators are Until and Nexttime,
thus allowing for the specification of durations. Temporal
triggers address the temporal part of condition specifica-
tion, but do not involve event specifications. We can only
specify an action to occur when two events happen within
a certain time interval by stating in the condition the effects
of those events on variables in the database.

Active Databases One of the questions we tried to an-
swer in this paper, is how the an active database benefits
from the integration of temporal database functionality.The
main benefit is found in the original motivation, viz., the
possibility of using temporal conditions and event specifi-
cations in rules. Although this benefit is widely recognised,
DEGAS is the first active database model to include a full
record of historical data. Furthermore, the history allows
the use of process algebra both for the definition of rule
and lifecycle semantics, and for event and lifecycle speci-
fication. This can be contrasted with operational semantics
found, for example, in Chimera [6] and Ariel [13]. It is also
simpler than the denotational semantics of the Starburst

rule system [18]. Event histories are also used to define the
semantics of event expressions in ODE [11], but here the
relation with temporal databases is not considered.

Another advantage of the use of process algebra is that
the event expression need not be converted to another for-
malism for the definition of the semantics. An example is
the conversion of event expressions to Petri nets in SAMOS
[10].

7 Concluding Remarks

In this paper we discussed the integration of temporal
and active databases in the DEGAS model. We saw that a full
active database requires the presence of the history of the
database. In DEGAS historical data are available through the
inclusion of the complete history in an object. This histori-
cal record contains all information necessary to implement
a full transaction-time temporal query language. Further-
more, the object history facilitates a clear process algebraic
definition of the active database semantics.

The incorporation of full temporal database functional-
ity in an active database greatly increases the complexity of
the rule execution model. A method to tackle this complex-
ity still has to be found. Hence, DEGAS does not incorporate
valid time.

A prototype implementation of DEGAS is under con-
struction. The simplicity of the DEGAS rule model is ex-
pected to facilitate a performant system. Since the motiva-
tion of DEGAS is largely found in distributed information
systems, further research will focus on a query model tai-
lored to a database of distributed objects. Clearly, this query
language will include facilities to exploit the historical data
stored in DEGAS objects.

References

[1] J.F.P. van den Akker and A.P.J.M. Siebes. DEGAS:
A temporal active data model based on object au-
tonomy. Technical Report CS-R9608, CWI, Amster-
dam, The Netherlands, 1996. Available through WWW
(http://www.cwi.nl/˜vdakker/).

[2] Johan van den Akker and Arno Siebes. DEGAS: Capturing
dynamics in objects. In P. Constantopoulos, J. Mylopoulos,
and Y. Vassiliou, editors, Advanced Informations Systems
Engineering - Proc. of CAiSE’96, pages 82-98, Heraklion,
Crete, Greece, May 1996. Springer. LNCS 1080.

[3] J.C.M. Baeten and W.P. Weijland. Process Algebra. Num-
ber 18 in Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, Cambridge, UK, 1990.

[4] Herman Balsters and Maarten M. Fokkinga. Subtyping can
have a simple semantics. Theoretical Computer Science,
87:81-96, 1991.

[5] Luca Cardelli. A semantics of multiple inheritance. In
G. Kahn, D.B. MacQueen, and G. Plotkin, editors, Proceed-
ings of the International Symposium on the Semantics of
Data Types, pages 51-68, Berlin, Germany, 1984. Springer.

[6] Stefano Ceri et al. Active Rule Management in Chimera,
chapter 6 in [19].

[7] U. Dayal et al. The HiPAC project: Combining ac-
tive databases and timing constraints. SIGMOD Record,
17(1):51–70, March 1988.

[8] Klaus R. Dittrich and Stella Gatziu. Time issues in active
database systems. In Proc. of the Intl. Workshop on an In-
frastructure for Temporal Databases, Arlington, TX, USA,
1993.

[9] Opher Etzion, Avigdor Gal, and Arie Segev. Retroac-
tive and proactive database processing. In J. Widom and
S. Chakravarthy, editors, Proc. of the 4th International
Workshop on Research Issues in Data Engineering: Active
Database Systems (RIDE-ADS), pages 126-131, Houston,
TX, USA, 1994. IEEE Computer Society Press.

[10] Stella Gatziu, Andreas Geppert, and Klaus R. Dittrich. Inte-
grating active concepts into an object-oriented database sys-
tem. In Paris Kanellakis and Joachim W. Schmidt, editors,
The Third International Workshop on Database Program-
ming Languages: Bulk Types and Persistent Data, pages
399-415. Morgan Kaufmann, 1991.

[11] N.H. Gehani, H.V. Jagadish, and O. Shmueli. Event speci-
fication in an active object-oriented database. In M. Stone-
braker, editor, Proc. of the 1992 ACM SIGMOD Intl. Conf.
on the Management of Data, pages 81-90, San Diego, USA,
1992.

[12] Seymour Ginsburg. Object and SpreadsheetHistories, chap-
ter 12 in [17].

[13] Eric N. Hanson. The design and implementation of the
Ariel active database rule system. IEEE Transactions on
Knowledge and Data Engineering, 8(1), 1996.

[14] L. Edwin McKenzie Jr. and Richard T. Snodgrass. Evalua-
tion of relational algebras incorporating the time dimension
in databases. ACM Computing Surveys, 23(4):501-543, De-
cember 1991.

[15] Shamkant B. Navathe and Rafi Ahmed.Temporal Extensions
to the Relational Model and SQL, chapter 4 in [17].

[16] A. Prasad Sistla and Ouri Wolfson. Temporal triggers in
active databases. IEEE Transactions on Knowledge and
Data Engineering, 7(3):471-486, 1995.

[17] A.U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and
R. Snodgrass. Temporal Databases: Theory, Design, and
Implementation. Benjamin/Cummings, Redwood City, CA,
USA, 1993.

[18] Jennifer Widom. A denotational semantics for the Star-
burst production rule language. SIGMOD Record, 21(3):4-9,
1992.

[19] Jennifer Widom and Stefano Ceri. Active Database Sys-
tems: Triggers and Rules for Advanced Database Process-
ing. Morgan Kaufmann, San Francisco, CA, USA, 1995.

