Object Historiesas a Foundation for an Active OODB

Johan van den Akker and Arno Siebes
CWI, PO.Box 94079, 1090 GB Amsterdam, The Netherlands
e-mai | : {vdakker, arno}@wi . nl

To appear in the Proceedings of the DEXA 96 workshop.
(© |EEE Computer Society 1996

Abstract

Several links exist between active and temporal
databases. These are summarised by the observation that
rulesaretriggered by a specified evolution of the database.
In this paper, we discuss the relation between active and
temporal database using DEGAS, an object-based ac-
tive database programming language. To achieve full ac-
tive database functionality, a DEGAS object records its
complete history. Hence, all data needed for a temporal
database supporting a single temporal dimension is pro-
vided. Furthermore, the semantics of the active behaviour
of DEGAS are defined straightforwardly in terms of the
object history. Finally, we discuss the advantages and dis-
advantagesof extending DEGASwith a second time dimen-
sion (to achieve full temporal functionality) from an active
database per spective

1 Introduction

In recent years, the areas of active databases [19] and
temporal databases [17] have been the focus of a signif-
icant research effort. Temporal databases concentrate on
recording and querying database statesrel ativetotime. Ac-
tive databases add dynamic behaviour to datain the form of
rules. A ruledefinesan action which isexecuted when spec-
ified events occur in thedatabase. In other words, the action
is executed, if the database state evolves over timein the
specified way. Hence, an investigation of the incorporation
of temporal elementsin an active databaseis justified.

From an active database viewpoint, two questions with
regard to itstemporal functionality are of interest. Thefirst
is, which record of temporal dataisrequired by afull active
database. The second question is, what are the benefits
of incorporating full tempora database functionality in an
active database.

Toanswer thesequestions, this paper presentsthetempo-
ral element of DEGAS[2], an active obj ect-oriented database
programming language. Theincorporation of atemporal el-
ement is achieved by including the complete history of an

objectinitsstate. Asaconseguence, the semanticsof theac-
tive behaviour of a DEGAS object can be specified in terms
of the object history, using a standard process algebraic
specification formalism.

In this paper, we first identify the temporal elements of
an active database. Then, we give a short introduction to
the main concepts of the DEGAS datamodel. After that, the
history of a DEGAS object is defined. Following this, we
show the formalisation of the active behaviour of an object
in terms of the object history. Finaly, we compare our
approach to other work in temporal and active databases.

2 Timein Active Databases

The key feature of active databases [19] are production
rules. Usualy, these are defined as event-condition-action
(ECA) triples. The event specification may be a complex
event expression composed of multiplebasic events, suchas
method calls[7, 10] and time events[7, 13, 10]. Sincerule
definitions specify sequences of events over time, an active
database has an inherent temporal element, as observed by
Dittrich [8] and Widom and Ceri [19].

We can also see this by looking into rule triggering in
more detail. In order to detect complex events, we need
to store the basic events occurring in the database. These
make up an event queue or event pool. Since a complex
event expression usually specifies a sequence of events, the
record of basic events must store information about the
order in which events occurred.

Thisinherent temporal element in active databases gives
rise to the question of the relation to databases that keep
historical data. To that end, we examine what temporal data
needs to be stored in an active databases. Not surprisingly,
this depends on the rule language.

Many active databases include time in an event expres-
sion. Thiscan beinrelativeform, such as*5 daysafter event
A” or absolute such as “every day at midnight”. Orthogo-
nally, we can put time in event specifications in different
ways. We can add a time parameter to all events or we can
have explicit time events in the event specifications. The
latter choice will make a difference in the way we check
the temporal part of the rule specification. In the former

case, we can check temporal conditionsin the condition of
the rule. In the latter, the time events are included in the
event detection mechanism.

Since most active database management systems offer
thepossibility to specify parametersof events, wealso need
to store the parameters of a method call in addition to the
time it occurred. In this way a rule can be triggered on
method calls only for certain parameter values. For exam-
ple, we may have a rule on a bank account that is only
invoked if a debit action of more than 1000 guilders is
executed.

Every extension of event specification in the definition
of rules beyond single basic events necessitates a record of
part of the history of the database. If we wish to offer all
facilities described above in an active DBMS, i.e,, timein
event specifications and parameters to events, we have to
storeall method callswith their parametersand timestamps.
It is obvious that we can reconstruct all historical states of
the database, if we have all state transitions in the form
of method calls. Hence, it is a small step from an active
database to a historical database.

A historical database is a restricted form of tempo-
ral database. Temporal databases [17] record data rela-
tive to time. A full temporal database has two tempo-
ral dimensions. Valid time denotes the time a value held
in the real world. Transaction time denotes the time a
value was entered into the database. The combination of
these two dimensions allows us to ater data retrospec-
tively, for example, to correct errors. Historical database
are temporal databaseswith only one temporal dimension.
In other words, ahistorical database only records the states
a database went through over time.

The DEGAS model presented in this paper aimsto incor-
porate temporal functionality in an active database. To this
end, the state of a DEGAS object includes its history, i.e.,
arecord of past states and method calls. Consequently, the
semantics of active rulesin a DEGAS object are defined in
terms of its history.

3 TheDEGASdata mode

We now giveaconciseintroduction to the main concepts
of theDEGASdatamodel. It isbased on autonomousobjects.
Themotivation for object autonomy ison onehand anatural
further devel opment of active object-oriented databasesand
on the other hand the development of highly distributed
information systems. The main contributionsof DEGAS are:

e Theintegration of historical and active database func-
tionality.

¢ A straightforward mechanism for object evolution, es-
pecially suited for implementing roles.

e Complete encapsulation of an object’s behaviour, in-
cluding rules.

e A good formalisation of rule semantics.

e A conceptual model for distributed information sys-
tems.

For a more elaborate introduction of DEGAS the reader is
referred to [2]. A full formal definition of DEGAS can be
foundin [1].

The fundamental notion in DEGAS is the object. The
definition of an object in DEGAS consists of structure and
behaviour. The structure of an object is defined by its at-
tributes. The behaviour definition of a DEGAS object con-
sistsof threeelements: methods, lifecyclesand rules. Meth-
ods definethe actions an object can execute. Thelifecycleof
an object specifies sequencing and preconditions of meth-
ods. A rule states that an object will execute a given action
in certain situations, specified by events and conditions on
object states.

In other words, methods and lifecycles define the poten-
tial behaviour of an object, whereasrulesdescribeitsactual
behaviour asfar as can be pre-determined. Conventionally,
only potential behaviour is specified in an object.

Figure 1 shows an example DEGAS object modelling a
PIN card. Attribute and method specification is straight-
forward in DEGAS. Lifecycles are guarded basic process
algebrai c expressions [3] composed from the set of method
names as basic actions using the sequential composition
(;), aternative composition (+), repetition (*), and paral-
lel merge (||) operators. For example, the third line of the
lifecycle definition in our exampl e specifiesthat aReqWith-
draw action must be followed by a WithdrawOK or a With-
drawRefuse action, and that this sequence may be repeated
arbitrarily. The parallel merge operator || means that two
actionstake place without restriction on their sequence, i.e.,
A||B = A;B+ B; A.

Rules in DeGAs follow the usual Event-Condition-
Action (ECA) format. The informal semantics of an ECA
ruleis, that if the event occurs and the object satisfies the
condition, the action is performed. In DEGAS events are
specified the same aslifecycles with addition of anegation
operator (—). Conditions in lifecycles and rules can refer
to historical values of attributes. If an attribute nameis pa-
rameterised by a timestamp, it refers to the value of the
attribute at the specified time. Otherwise, it refers to the
current value of the attribute. The rules in PINcard show
historical referencesin DEGAS rules.

Morein particular, thefirst rule specifiesthat the PINcard
sends its permission for a cash withdrawal after a request,
if the total amount withdrawn during the preceding week
isless than the limit of the card. The second rule responds
with arefusal, if the limit is exceeded.

The class of a DEGAS object specifiesitsinherent capa-
bilities (= attributes, methods, lifecycles and constraints).
Object specialisation in DEGASis achieved through addons.
Anaddon model stransient capabilitiesof an object. Addons
can be added to and del eted from an object dynamically, for
example, when an object engagesin arelation. A restricted
form of inheritance is supported by DEGAS. Since this is
not relevant for this paper, the interested reader is referred
to [1] for more details. Relationsin DEGAS are al so objects
with structure and behaviour.

Object PINcard
Attributes
number : integer
limit : integer
account : Oid
issuer : Oid
owner : Oid
PIN : integer
M ethods
ReqWithdraw(amount:integer,requester:Oid) = {

}

WithdravOK (amount:integer,requester:Oid) = {
reguester.allowed(amount)

}

WitdrawRefuse(amount:integer,requester:Oid) = {
reguester.refuse(amount)

}

ChangeLimit(newLimit : integer) = {
limit = newLimit

}

ChangePIN(newPIN : integer) = {
PIN = newPIN

Lifecycles
([sender==issuer] ChangeLimit)*
([sender==owner] ChangePIN)*
(RegWithdraw;(WithdrawOK + WithdravRefuse))*
Rules
On (WithdravOK (amount,atm)(¢))*;
ReqWithdraw(reqAmount,machine)(t1)
if 1 — Min(t) <1 week
& & Sum(amount, t)+regAmount < limit
do WithdrawOK (regAmount,machine)
On (WithdravOK (amount,atm)(¢))*;
ReqWithdraw(reqAmount,machine)(t:)
if 1 — Min(t) <1 week
& & Sum(amount, t)+regAmount > limit
do WithdrawvRefuse(regA mount,machine)
EndObject

Figure 1: A DEGAS object

In the rest of the paper, we focus on the formalisation
of the active behaviour of a DEGAS object in relation to its
historical record. Hence, we do not discuss the aspect of
object evolution through addons.

4 TheHistory of an Object

In the previous section we informally introduced the
main concepts and the syntax of DEGAS and presented its
temporal functionality. We now proceed with the formali-
sation of the relevant part of the DEGAS datamodel. In this
section we give aformal definition of the state of a DEGAS
object, which consists of its complete history.

Object typing in DEGAsfollowsCardelli [5] and Balsters
[4]. The underlying type of an object is a tuple type con-
taining the attributes. Besides simpletypes, such asInteger,
String or Oid, there are set and tuple types. The underly-
ing type of an object definition contains at least its own
identifier this.

An operator Type(D) can be applied to an object defini-
tionto obtain theunderlying type of theobject. For example,
the underlying type of the PINcard object from Section 3is

Type(PINcard) =
{this:Oid, number:integer, limit:integer, account:Oid,
issuer:Oid, owner:Oid, PIN:integer)

Following temporal database terminology, the state of
an object at acertain point in timeiscalled asnapshot state
[14]. It records the time the object came in this state, a
valuation for the attributesand the method call that brought
the object into this snapshot state.

More formally, a snapshot state of an object O is a
triple (¢, I(7), MC), where ¢ is a timestamp giving the
start time of the validity of this state, I(r) isthe valuation
of 7 = Type(O) of the attributes in this state and M C
is a method call, which consists of a method name and a
parameter list.

State History The state history of a DEGAS object
records the snapshot states the object went through dur-
ing its existence. This means that a state history SH isa
seguence of snapshot states:

SH = SH(0); SH(1);...;SH(n)

whereV:, 0 < ¢ <n—1:% < t;41. Thisdefinition of an
object history is largely similar to that found in [12]. The
main differenceisthat aDEGAS object history dealsdirectly
with DEGAS methods calls and attributes, instead of the
more abstract notions of actions and input and evaluation
attributes. The following part of the history of a PINcard

object is an example:

(12 : 34 : 00,
(This = 102040, limit = 500, ..., PIN = 1234),
ChangePIN(1234));

(13 : 45 : 00,
(This = 102040, limit = 1000, ..., PIN = 1234),
ChangeLimit(1000))

Lifecycles and the event expressions of rules
are checked using a projection of the state his
tory, the event history. It only contains timestamp-
method call pairs. If we have a state history SH =
SH(0); SH(1);...; SH(n), then the event history EH
is the sequence EH(0); EH(1);...; E(n) of time-event
pairs, where:

Vi, SH(’L) = <ti,T,‘,I(T,‘),MC,'> :

. de
EH() < (si,ei(p1,- .., pm)),
S :t,'/\e,'(pl,...,pm)ZMC,’

The example state history above gives usthisevent history:

(12 : 34 : 00, ChangePIN(1234));
(13 : 45 : 00, ChangeL imit(1000))

5 ActiveBehaviour

The state history of a DEGAS object serves as a basis
for the formalisation of its active behaviour. Hence, we can
formulate the semantics of lifecycles and rules in terms
of process algebraic expressions relative to the observed
execution of the object.

Lifecycle Composition Execution of methodsand rules
must conform to the lifecycles on the object. In addition
rules are triggered by the contents of the event history. As
we saw above, lifecycles are guarded basic process alge-
brai c expressions| 3] with the set of methodsof the object as
its basic actions. Hence, the semantics of lifecyclesisalso
formulated in process algebraic terms. Suppose we have an
object O with the following lifecycle definition:

Lifecycles
Cy
C;
Cn
Then O followsthe process:

C =Ci|Csl...|Ca

with communication function « defined by: Ve € M :
¥(e, &) = o, Wwhere M isthe set of methods of O.

In process algebra in general, a communication func-
tion v specifies synchronisation between two processes.
(4, B) = C meansthat the actions 4 and B have to take
place simultaneously and are replaced in the trace of the
process by the single action C'. For example, if we havethe
process (4; B)|(C; D) and y(B, D) = E, then aresulting
tracemight be: A; C; E.

In practical terms the communication function defined
for a DEGAS object means that, if an action occursin more
than one lifecycle, the execution of that action is a step
forward in al lifecycles. For example, the lifecycle of the
PINcard object from Section 3is:

([sender == issuer]ChangeLimit)*
||([sender == owner]ChangePIN)*
||(RegWithdraw; (WithdrawOK + WithdrawRefuse))*

Since the three lifecycles defined in PINcard do not have
actions in common, the communication merge | reduces
to an ordinary parallel merge ||. Note that a finite automa-
ton is sufficient to match the event history with an event
expression or alifecycle.

Lifecycle Checking A method is executed if it does not
violate the lifecycles imposed on the object. This means
that the object state must satisfy the, possibly empty, pre-
condition given by thelifecycle. In addition the method call
in combination with the event history must match the event
expression given. If thisis the case, the method call is exe-
cuted and appended to the event history. If the method call
does not satisfy the lifecycle of an object, it is discarded.

The formalisation is, that a method call MC =
m(q1,---,qx) IS executed on an object O with state his-
tory SH = SH(0);...; SH(n) at timet, iff the lifecycle
checking automaton induced by the lifecycle of O isin a
state with an outgoing transition labelled with a method
name . and a condition C, such that, m = p and C istrue
in O at timet. The resulting new state of the object is

SH' = SH;{t,M(m(q1,...,qx),I(1)), MC)

Here M (m(q1, .. .,4qx), I(7)) denotesthe result of the ex-
ecution of m(qs, ..., gx) on attribute valuation I(7).

Rule Triggering As explained above, arule in DEGAS
isan event-condition-action triple (E, C, A), where E isa
basic process algebraic expression, C a conditionand 4 a
method call. An(E, C, A) isspecified asfollowsin DEGAS:

OnFE
if C
do A
Before we define the execution of rules, wefirst give an
informal sketch of the execution model of a DEGAS object.
Basically, the object executesacycleof two activities. There
isaqueueof method callswaiting to beexecuted. Theobject

takes a method call from this queue, checksif it isallowed
by the lifecycles, and if so executes it. If the method call
does not agree with the object’slifecycle, it is not executed
and discarded. During the execution of a method a number
of rules may be triggered. These are collected in a set of
triggered rules. After amethod hasfinished, aruleis picked
at random from this set for execution. After the execution
of this rule, we again construct a set of triggered rules to
pick a rule from. If no more rules are triggered, we start
again with method execution.

P
Execute Method }

Generate set of
Triggered RulesR

Risempty
N

Ris not empty

Pick Rulefrom R

for Execution

/

Figure 2: Execution Cycle of aDEGAS Object

From thisinformal description, we learn that the execu-
tion of rulesis atwo phase process. During amethod call a
set of rulesthat aretriggered by that method call isbuilt up.
After the method has finished, rules are picked at random
from this set. If the condition of the picked rule holds, the
ruleis executed.

A ruleis triggered by an event occurring in the event
history as a result of a method call. If we have an event
hisory EH = EH(0);...; EH(m) and a method call
MC = pu(p1,-..,px) & atimet. Rule R = (E,C, 4)
is triggered at time ¢, if E parses the new event history
EH; (¢, u(p1, - - -, pr), t) correctly.

After each execution of a method p the set of triggered
rulesR,, is constructed. This meansthat the execution of a
complex method, i.e., amethod composed of method calls,
is interrupted by the execution of rules triggered by the
methodsit cals.

After a method has finished, one rule is picked for ex-
ecution from the set of triggered rules at random. If its
condition is true and the method call that is its action sat-
isfies the lifecycle of the object, it is executed. Otherwise,
another ruleis picked for execution. During rule execution

ruletriggering continues. | n other words, after each method
executed as a consequence of arule, anew set of triggered
rulesis constructed.

Rule Execution Given aruleset R, after the execution
of method p on an object O. The rule execution phase
followsthe algorithm:

LR=R,

2. AruleR = (E, C, A) ispicked at random from R at
timet.

3. If Cistrueand A satisfiesthe lifecycles of the object,
A isexecuted. Otherwise, discard R and goto step 2.

4. Generate anew set R of rulestriggered by the action
of R.

5. If R # 0, then goto step 2.

Thisexecution model givesusflexibility intheway rules
interact with the lifecycles. If the action of arule cannot be
executed, becauseit violatesthelifecyclesof the object, we
have two options. The action can be discarded or it can be
retried at alater time.

Theformer will be usedin situationswhereonly atimely
reaction is useful. These can be found in applications in
financial markets. For example, our reaction to a falling
price of sharesisthat we buy some. Thisis only profitable
if we do it immediately, because otherwise the price may
already have risen again. The other strategy is of use if
the action of a rule must always be executed once arule
has been triggered. Rulesthat maintain integrity constraints
will use such a strategy.

The standard behaviour of DEGASistheimmediate reac-
tion. Suppose an object must react to the occurrence of the
event 4; B with an action u. Thisisspecified by thefollow-
ing rule. If this rule is not chosen for execution after 4; B,
since another rule was chosen from the set of triggered
rules, it is not considered again until the next occurrence of
A; B.

On 4; B
do u

The aternative strategy can be programmed in a DEGAS
rule through the non-occurrence operator —. Thefollowing
rule, which specifiesthat theactionisawaystriggered after
the occurrence of 4; B until p has occurred:

On A; B;—yu
do u

6 Comparison to Other Work

Tempor al Databases If we compare the temporal func-
tionality of DEGAS with temporal databases in general,
the first thing to note is that DEGAS only records trans-
action time. Hence, it does not offer the functionality of
databases which additionally include valid time. There-
fore, we choose TSQL [15] for a comparison of DEGAS,
since this is a straightforward mono-temporal extension
of SQL. The temporal functionality offered by TSQL are
WHEN-clauses, retrieval of timestamps, temporal ordering,
a TIME-SLICE operation, and aggregate-functions.

WHEN-clauses specify temporal conditions on the data
involved in aquery, for example, an overlap in time of two
values. Retrieval of timestamps means that we can ask the
databasefor thetimeaconditionwasvalid. Temporal order-
ing givesusthepossibility to ask querieslike” Thefirsttime
employee John's salary was above 50K”. All data needed
to answer these three categories of queriesis present in the
history of a DEGAS object, since each attribute valuationis
related to atimeinterval.

A time-slice restricts a query to a sub-interval of the
complete history. Clearly, we can do thisin DEGAS by eval-
uating a query on a subsequence of the object history only.
Aggregates are functions applied to a time interval. Ex-
amples are average, minimum and maximum values of an
attribute over a period of time. Aggregates relative to time
can be considered a special case of time-slicing, since we
calculate the aggregate over a specified time dlice.. Hence,
the data needed is present in a DEGAS object.

The comparison between TSQL and DEGAS is sum-
marised by thefollowing table. We see that a DEGAS object
containsall the dataneeded for afull mono-temporal query
language.

TSQL Feature Information present
Conditional: WHEN Y
Retrieval of timestamps Y
Temporally ordered information Y
Time-dlices Y
Aggregates Y

DEGAS can be extended with a second temporal dimension,
valid time, by qualifying every reference to timein arule
with the temporal dimension it refers to. For example, if
we refer to a historical attribute value in the condition of
arule, we must specify whether it refers to valid time or
transaction time.

The situation, however, gets more complex, if we need
to define arule execution model in an environment where
temporal data are altered retrospectively. Supposearuleis
triggered on two events that happen within five minutes.
If we specify that these five minutes are valid time, we

must also consider changes of our knowledge of the past.
If we find out later that two events happened within five
minutes of each other, we must specify if it still makes
sense to trigger the rule. Further complexity is introduced
by the combination of valid timestamps and transaction
timestamps.

As we saw earlier, a full active database requires the
presenceof al historical data needed to provide transaction
time functionality. The incorporation of a second temporal
dimension means a big complication of the rule model. At
present a good solution to handle this complexity is still
an open problem. Hence, we restrict DEGAS to a single
temporal dimension.

Active Temporal Databases Previous research on the
integration of tempora and active databases is the work
by Etzion, Gal, and Segev [9]. Their model is rich on the
tempora side, including three temporal dimensions. Ac-
tiverules, however, arerestricted to derived data. The main
focusis on the consequences of changesin the rules speci-
fying the derived data. An example givenin[9] isaretroac-
tive change in the way fines for speeding are calculated.
The possibility of such changes necessitates the third time
dimension in addition to valid and transaction time, deci-
siontime. Thistimestamp recordsthe timederived datawas
calculated.

Temporal Specification of Trigger s Another approach
concerned with time in active databases is the work on
temporal triggers by Sistla and Wolfson [16]. These are
condition-action rules, wherethe condition isformulated in
two variantsof atemporal logic, called the Future Temporal
Logic (FTL) and the Past Temporal Logic (PTL). Theselog-
ics specify relations between timestamped database states.
The basic modal operators are Unti | and Nextti ne,
thus alowing for the specification of durations. Temporal
triggers address the temporal part of condition specifica-
tion, but do not involve event specifications. We can only
specify an action to occur when two events happen within
acertaintimeinterval by stating in the condition the effects
of those events on variables in the database.

Active Databases One of the questions we tried to an-
swer in this paper, is how the an active database benefits
from theintegration of temporal databasefunctionality. The
main benefit is found in the origina motivation, viz., the
possibility of using temporal conditions and event specifi-
cationsin rules. Although this benefit iswidely recognised,
DeGAs is the first active database model to include a full
record of historical data. Furthermore, the history allows
the use of process agebra both for the definition of rule
and lifecycle semantics, and for event and lifecycle speci-
fication. This can be contrasted with operational semantics
found, for example, in Chimera[6] and Ariel [13]. Itisalso
simpler than the denotational semantics of the Starburst

rule system [18]. Event histories are also used to define the
semantics of event expressions in ODE [11], but here the
relation with temporal databases is not considered.

Another advantage of the use of process algebra is that
the event expression need not be converted to another for-
malism for the definition of the semantics. An example is
the conversion of event expressionsto Petri netsin SAMOS
[10].

7 Concluding Remarks

In this paper we discussed the integration of temporal
and active databasesin the DEGAS model . We saw that afull
active database requires the presence of the history of the
database. In DEGAS historical dataareavailablethroughthe
inclusion of the complete history in an object. This histori-
cal record contains all information necessary to implement
a full transaction-time tempora query language. Further-
more, the object history facilitatesaclear processalgebraic
definition of the active database semantics.

The incorporation of full temporal database functional-
ity in an active database greatly increases the compl exity of
therule execution model. A method to tackle this complex-
ity still hasto be found. Hence, DEGAS does not incorporate
valid time.

A prototype implementation of DEGAS is under con-
struction. The simplicity of the DEGAS rule model is ex-
pected to facilitate a performant system. Since the motiva-
tion of DEGAS is largely found in distributed information
systems, further research will focus on a query model tai-
lored to adatabase of distributed objects. Clearly, thisquery
language will include facilitiesto exploit the historical data
stored in DEGAS objects.

References

[1] JFP van den Akker and A.PJM. Siebes. DEGAS:
A tempora active data model based on object au-
tonomy. Technica Report CS-R9608, CWI, Amster-
dam, The Netherlands, 1996. Available through WWW
(http://ww. cwi . nl /~vdakker/).

[2] Johan van den Akker and Arno Siebes. DEGAS: Capturing
dynamicsin objects. In P. Constantopoul os, J. Mylopoulos,
and Y. Vassiliou, editors, Advanced Informations Systems
Engineering - Proc. of CAiSE' 96, pages 82-98, Heraklion,
Crete, Greece, May 1996. Springer. LNCS 1080.

[3] J.C.M. Bageten and W.P. Weijland. Process Algebra. Num-
ber 18 in Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, Cambridge, UK, 1990.

[4] Herman Balsters and Maarten M. Fokkinga. Subtyping can
have a simple semantics. Theoretical Computer Science,
87:81-96, 1991.

(5]

(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

Luca Cardelli. A semantics of multiple inheritance. In
G. Kahn, D.B. MacQueen, and G. Plotkin, editors, Proceed-
ings of the International Symposium on the Semantics of
Data Types, pages 51-68, Berlin, Germany, 1984. Springer.
Stefano Ceri et a. Active Rule Management in Chimera,
chapter 6in [19].

U. Daya et a. The HiPAC project: Combining ac-
tive databases and timing constraints. SGMOD Record,
17(1):51-70, March 1988.

Klaus R. Dittrich and Stella Gatziu. Time issues in active
database systems. In Proc. of the Intl. Workshop on an In-
frastructure for Temporal Databases, Arlington, TX, USA,
1993.

Opher Etzion, Avigdor Gal, and Arie Segev. Retroac-
tive and proactive database processing. In J. Widom and
S. Chakravarthy, editors, Proc. of the 4th International
Workshop on Research Issues in Data Engineering: Active
Database Systems (RIDE-ADS), pages 126-131, Houston,
TX, USA, 1994. |[EEE Computer Society Press.

Stella Gatziu, Andreas Geppert, and KlausR. Dittrich. Inte-
grating active conceptsinto an object-oriented database sys-
tem. In Paris Kanellakis and Joachim W. Schmidit, editors,
The Third International Workshop on Database Program-
ming Languages: Bulk Types and Persistent Data, pages
399-415. Morgan Kaufmann, 1991.

N.H. Gehani, H.V. Jagadish, and O. Shmueli. Event speci-
fication in an active object-oriented database. In M. Stone-
braker, editor, Proc. of the 1992 ACM SIGMOD Intl. Conf.
on the Management of Data, pages 81-90, San Diego, USA,
1992.

Seymour Ginsburg. Object and SpreadsheetHistories, chap-
ter 12in [17].

Eric N. Hanson. The design and implementation of the
Ariel active database rule system. |EEE Transactions on
Knowledge and Data Engineering, 8(1), 1996.

L. Edwin McKenzie Jr. and Richard T. Snodgrass. Evalua-
tion of relational algebrasincorporating the time dimension
in databases. ACM Computing Surveys, 23(4):501-543, De-
cember 1991.

Shamkant B. Navathe and Rafi Ahmed. Temporal Extensions
to the Relational Model and SQL, chapter 4 in[17].

A. Prasad Sistla and Ouri Wolfson. Temporal triggers in
active databases. |EEE Transactions on Knowledge and
Data Engineering, 7(3):471-486, 1995.

A.U. Tansdl, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and
R. Snodgrass. Temporal Databases: Theory, Design, and
Implementation. Benjamin/Cummings, Redwood City, CA,
USA, 1993.

Jennifer Widom. A denotational semantics for the Star-

burst productionrulelanguage. S GMOD Record, 21(3):4-9,
1992.

Jennifer Widom and Stefano Ceri. Active Database Sys-
tems: Triggers and Rules for Advanced Database Process-
ing. Morgan Kaufmann, San Francisco, CA, USA, 1995.

